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PREFACE

This Memorandum is one in a continuing series of RAND

publications dealing with theoretical and computational

questions which have arisen in connection with the RAND

program of research in biology and physiology.

The Memorandum contributes to our ability to apply

electronic computer techniques in the analysis of complex

chemical systems, which, until recently, were far too

complex for any quantitative analysis--e.g., models of

complex physiological systems. But, as the capability to

use computers in such applications becomes better under-

stood, certain hitherto unresolved questions of mathematics

and chemistry become apparent. This Memorandum considers

the resolution of several of these problems, and should be

of interest to both mathematicians and chemists.

The mathematical aspects should also be of interest

in other fields where computational analyses of complex

chemical systems are under consideration; e.g., in stueies

of rocket propulsion systems, planetary atmospheres, re-

entry problems, etc.

tFor example, see Refs. 4, 6-7, 9-12, and 14.
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SUMMARY

Recent progress in computational techniques for the

analysis of complex chemical systems has renewed interest

in the relationship between the mass action laws, which

have been traditionally employed for the computacion of

chemical equilibrium compositions, and the Gibbs free

energy function, which until recently has generally been

used only for theoretical purposes. Several attendant

mathematical questions, hitherto unresolved, have now be-

come important. These concern the existence and unique-

ness of a solution to the equations arising from the mass

action laws; the existence and uniqueness of a composition

that minimizes the free energy; and the precise relation-

ship between the two.

These questions become imp-.cant because there is a

greater probability of complex pathologies being exhibited

when extremely large chemical systems are analyzed, and

because the use of automatic digital computation demands

a precise knowledge of these pathologies.

In Part i, the problems are formulated, both from the

mathematical and chemical viewpoints. In Part II, mathe-

matical tools unavailable in Gibbs' time ie employed in
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an attempt to answer the questions posed. Some applica-

tions of the results are given in the concluding section

for illustrative purposes.
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INTRODUCTION

The problems discussed in this Memorandum are moti-

vated by problems arising in the computation of chemical

equilibrium. Classically, the composition of a single- or

multi-phase chemical system in chemical equilibrium has

been computationally determined by solving certain systems

of simultaneous equations. These equations included linear

equations (mass balance laws) as well as nonlinear equa-

tions (mass action laws). Gibbs [1] and others formulated

the "free energy function" and showed that the mass action

laws were closely related to a least-action principle with

respect to that function. That is, he showed that under

certain circumstances minimizing the free energy function

is equivalent to satisfying the mass action laws.

Until recently, this relationship between the mass

action laws and the Gibbs free energy function was ordi-

narily used only for theoretical purposes, while the

actual computation of equilibrium compositions normally

employed the mass action laws. t It has recently been

shown [6-8] that chemical equilibrium compositions could

be determined numerically by minimizing the Gibbs free

tSee, for example, Refs. 2-5.
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energy function. T1- cechnique appears to offer extremely

powerful and far reaching tools for the analysis of complex

chemical systems. It has been employed in the analysis of

extremely complex models of physiological systems which

were formerly far beyond the reach of any quantitative

analysis E9-12'.

Due to the fact that it is now possible to analyze

the equilibrium behavior of very complex chemical systems

by means of automatic digital computation, certain ques-

tions which appear to have been left dormant since the

time of Gibbs become important. We have in mind such

questions as: Do the equations given by the mass balance

laws and mass action laws possess a solution? Is this

solution unique? If it is not unique, what is the nature

of the set of all solutions? Does the Gibbs free energy

function possess a minimum? Is this minimum attainable

by a unique composition? If not, what is the nature of

the set of all minimizing compositions? And finally,

what are the relations between the solutions to the mass

action laws and the minima of the Gibbs free energy func-

tion?

These questions now become important because, first,

the extremely large chemical systems which are now
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susceptible to analysis are more apt to exhibit pathologies,

and are apt to exhibit more complex pathologies, than the

simpler systems with which we have been able to deal in the

past; and secondly, the use of automatic digital computa-

tion requires a much more precise knowledge of the nature

of the pathologies which can occur.

In Part I (Sections 1-5) we will motivate formulations

of these prcblems. In Part II (Sections 6-12) we will

attempt to answer these questions, using mathematical tools

which were unavailable to Gibbs.

An attempt has been made to write Part I so that it

will be readable by the mathematically literate chemist,

physiologist, etc. Part I also serves as a chemical in-

troduction to the mathematician. Unfortunately, the chemist

will find the chemical exposition of Part I quite elementary

and belaboring of details. The mathematician will have an

analogous complaint as to the mathematical exposition of

Part 1.

Part II will require some familiarity with mathematical

analysis, linear algebra, and the theory of convex functions.
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PART I

i. THE CHEMICAL SYSTEM

We will consider chemical systems composed of a finite

number of homogeneous phases. 3y a homogeneous phase we

mean one which is homogeneous in chemical composition,

pressure, and temperature. The question of under what

circumstances a phase is to be regarded as homogeneous is

one which is not considered here. It can only be answered

as part of the process by which we formulate a model of an

actual chemical system.

For example, a chemical system consisting of a liquid

solution in a vessel over which there is a vapor, might

be regarded as having two phases--a gas phase and a liquid

phase. A chemical system consisting of two solutions

separated by a semipermeable membrane might be regarded

as having two liquid phases.

It should be emphasized that all that is required of

a phase is that it be homogeneous. It need not, for example,

occupy contiguous portions of space. Thus, in Ref. 12, all

the interiors of the red cells of the body are usefully

regarded as forming a single phase. (Note that this phase

is not really homogeneous--but no phase is ever really
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homogeneous. The only question is: Does the assumption

of homogeneity hold to a sufficient degree for the analyt-

ical purposes which the designer of a model has in mind?)

In what follows, the adjective "homogeneous" is generally

omitted in referring to homogeneous phases. Note that the

possibility of a chemical system consisting of exactly one

phase has not been precluded.

It shall be assumed that each phase is at some specified

pressure and temperature.

Let a chemical system have K phases, P1 ,P ... ,PK

Let the chemical species which can occur in the phase, Pk'

be Akl, .. ,Aki,...,A k k where Ik is the number of species

in phase k.

This last statement requires some elaboration. First,

by a species is meant a molecular species. Examples of

species are H20, NaCl, Na+. Note that when a species is

specified, a molecular or ionic structure is implied as

well as its composition in terms of the number of atoms

of each element composing a molecule of the species. Thus,

two distinct species might be identical when looked at in

terms of their molecular formulas. Also, for reasons (f

technical mathematical convenience, a species which can

occur in, say, two different phases will be regarded as

representing two different species. Thus, if H20 could



-7-

occur in both phase P1 and phase P2 ) we would regard H2 0

in phase PI, and H20 in phase P2, as representing two

different species. Thus, if PI is a liquid phase and P2

a gaseous phase, we might refer to H 20-liquid, and to H 20-

vapor. When a molecule moves from one phase to another

(for example, by evaporation, condensation, or migration

across a semi-permeable membrane) we will regard a type of

chemical reaction as having occurred--a reaction in which

one species was transformed into another species.

Secondly, by saying that a species Aki can occur in a

phase Pk' it is not necessarily meant that at equilibrium

any positive amount of Aki will be found in Pk" It is

merely that provision is to be made for the possibility

that Aki might occur in P The question of what species

will be provided for in what phases is a question which

can only be answered by judgment and experience, and by

some knowledge of the characteristics of the system under

study. Theoretically, one might provide for the possible

presence of each of the billions of chemical species in

each phase. If this were done, and if the resulting

numerical problem could be solved, almost all species

would occur in negligibly small--less than trace--amounts.

Thus, the problem of prescribing which species are to be
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provided for in which compartments is a problem of pre-

dicting which species will occur in more than negligible

amounts. Of course, in case of doubt, one can provide for

a few species for which one is not certain.

It should be observed that if a phase Pk is a chemical

solution, then the solvent itself is one of the species

occurring in Pk"

Let Nki be the number of moles of Aki present in Pk"

That is, the number of molecules of Aki present is (by

definition of a mole) equal to Nki multiplied by Avagadro's

number (approximately 10 23).

Let Nk be a vector whose components are Nkl,...,Nkik*

Let N be the vector whose components are

(N NN N N *N )N N.. ).
illN2,.., I 1 2 1 2N2 2  K2 12 ;  K NK2 '  KI K

Thus, Nk is a vector with Ik components which specifies

the composition of the phase Pk' and N is a vector with

K

I= IIk

k-1

components which specifies the composition of the entire

system.
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Since the temperatures and pressures of the phases

are assumed specified, the vector N may be regarded as

a state vector. That is, N completely describes the state

of the system.

Let a k(N) be the total number of moles in Pk when the

system is in state N; that is, let

Ik

(1.1) ak(N) = I Nki ' for 1 k K
i3l

Also, let

Nk

(1.2) nki(N) Nki , for 1 k N , 1 5 i Ik a k(N)k

That is, n ki(N) is the concentration of Aki, when the

system is in state N. Concentration can be measured in

a variety of scales. Our definition of nki amounts to

choosing the "mole fraction" scale.

2. THE MASS BALANCE LAWS

Following Ref. 10, we will express the mass balance

laws as linear conditions on N. Let B I...,BI,..o,B L be

a set of fundamental building blocks, such that each species

Aki is composed of these building blocks.
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For example, B I, . .. ,BL might be taken to be the

atomic elements. However, it is often better to choose more

complex structures as building blocks.+ Let each molecule

of Aki contain S k,i, units of B,. Thus, the vector

(S ki....Ski,L) is essentially the molecular formula

for Aki. Note there is nothing to prevent two different

species from having identical molecular formulas. Let

0
S0 be the total number of units of B. in the system. We

than have the conditions:

K k 0

(2.1) X Sk i; Nki =S , for -L.

k=l i=l

The description of those aspects of the system con-

cerned with such questions as which species are permeable

to interphase boundaries, can be implemented by an ap-

propriate extension of the set of fundamental building

blocks. This process has been more completely described

elsewhere [10j; we will content ourselves here with a simple,

brief example. Consider a system composed o, two phases,

separated by a semipermeable membrane. Suppose each phase

contains the following species: H20, H+, OH-, a protein,

R, and an ionized form of that protein, RH . Suppose the

+See Refs. 10 and 11.
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membrane is permeable to all species except R and RH+.

This situation can be expressed by taking as building

blocks, H!, OH-, and two forms of R: RI, representing

R in phase 1; and R2 , representing R in phase 2. Thus,

the following tableau gives the values of the Sk,i,.

The columns represent building blocks; the rows represent

species; the body of the table gives the Ski,.

Table I

H OH R

A H in phase 1 1 0 0 0

A1 ,2 =OHin phase 1 0 1 0 0

AI, 3  H 20 in phase I 1 1 0 0

A,4 =R in phase 1 0 0 1 0

A RH+ in phase 1 1 0 1 0A1,5

A2 )1 = H' in phase 2 1 0 0 0

A2) 2 = OH in phase 2 0 1 0 0

A2 , 3 = H2 0 in phase 2 1 1 0 0

A2, 4 = R in phase 2 0 0 0 1

A2 , 5 =R in phase 2 1 0 0 1

We now leave the example and return to our discussion

of general chemical systems.
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A chemical system may have one or more phases on

which it is desirable to impose a condition of charge

neutrality. To impose such a condition on, say, phase

Pk) let Si,k,L+1 be the charge per mole of Aik. (Si,k,L+I

will be zero unless A is an ion.) Let SikLI = 0

for k' j k. Let SL+ = 0. Then, the charge neutrality

L+l

condition for Pk has the same form as the equations of

(2.1) and can be included among them.

Finally, from the definition of Nki, it is clear that

we must have

(2.2) Nki t 0 , for i <  k <  K , 1: i s I k

We are hence led to view the constraints on the system

as a set of simultaneous linear equations of the form

(2.1) and a set of simultaneous inequalities of the form

(2.2).

3. REACTION VECTORS AND ME STOICHIOMETRIC CONDITIONS

We consider chemical reactions involving the species

of a system. In equilibrium chemistry, a reaction is

described by writing two formal sums separated by a double

arrow. Each of these formal sums consists of one or more
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terms. Each of these terms consists formally of a positive

real number, called a stoichiometric coefficient, multi-

plied by the symbol for some chemical species of the system.

The species occurring in the left-hand formal sum are called

reactants; the species occurring in the right-hand formal

sum are called products. The two formal sums separated by

a double arrow form the stoichiometric equation of the

reaction. Note that mathematically speaking, the stoichi-

ometric equation is not an equation at all.

Given any such stoichiometric equation, we shall define

a vector e, with components 0ki (1 ' k ' K, 1 i 1) ,

as follows. To define 8, consider the reaction as written

out. If Aki does not occur in the reaction, either as a

product or as a reactant, let eki ' 0. if Ai occurs as

a reactant, but not as a product, let 8ki be its stoichi-

ometric ioefficient. If Aki occurs as a product, but not

as a reactant, let 8ki be the negative of its sto-ichiometric

coefficient. Finally, if ki occurs both as a product and

as a reactant, let 8ki be its coefficient as a reactant,

minus its coefficient as a product.

To understand the definition of 9, treat the. stoichi-

ometric equation formatlly as a mathematical equation,

bringing all terms to the left-hand side (changing the
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signs in the process) and collecting terms. The vector

^ has been defined so that this manipulation yields the

"E quation"

K Ik

(3.1) X x 8 IK~(3.) I I ki ki 0.

k=l i=l

We shall call any vector e so obtainable from a re-

action a reaction vector. Observe that different re-

actions may have the same reaction vector.

We have, as a condition for a vector 8 to be a re-

action vector, that

K Ik

(3.2) x x Ski,k 8ki 0, for l5i ':!aL

k-I i=l

where the k,i,t are those of equations (2.1). The con-

dition is sufficient as well as necessary; we shall re-

gard any vector e that satisfies (3.2) as a reaction vector.

Note that (2.1) and (3.2) are closely related, They

differ, however, in two respects: i) in that (2.1) is a

condition on a vector N in order that it be a composition

vector, while (3.2) is a condition on a vector 8 in order

that it be a reaction vector; and 2) in that the right-hand
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sides of (3.2) are all zero, while those of (2.1) are not.

Unfortunately, the chemical literature refers to both

sets of conditions as mass balance laws. We shall reserve

the term "mass balance laws" for (2.1) and call (3.2) the

stoichiometric conditions.

4. THE MASS ACTION LAWS

We shall confine our attention to systems which ex-

hibit the simplest form of the mass action laws. Such

systems are called "ideal" in Ref. 13.t

In our terminology, the mass action laws can be stated

as follows: For any reaction having a reaction vector e,

there is an equilibrium constant k(8), such that, for any

composition vector N representing an equilibrium state of

the system, we have

K Ik

K k ki
(4.1) [I H (nki(N)) = k(e)

k=l i=l

We shall find it useful to perform certain manipula-
I

tions on (4.1). Let us first take the logarithm of each

side to get

+The results of this paper also apply to certain types
of non-ideal systems. However, we prefer to simplify the
exposition by expressing our results in terms of ideal systems.
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K Ik

(4.2) X eki log nki(N) = log k(@)

k=l i=l

Equation 4.2 is thus satisfied for all vectors 8 which

are reaction vectors; that is, for all vectors e which

satisfy the stoichiometric condition (3.2). It should be

noted that the form of (3.2) implies that any scalar

multiple of a reaction vector is a reaction vector, and

that the sum of any two reaction vectors is a reaction

vector. Furthermore, the form of equation (4.2) shows

that if e and cp are reaction vectors, then

log k(8 + cp) = log k(O) + log k(cP)

and that if r is a scalar, then

log k(r8) = r log k(O)

These facts imply the existence of constants Cki such

that

K I k

(4.3) log k(e) = - Cki ki

k=l i=l

tB ,.ause log k(G) is then a linear function of e.
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The substitution of the value of log k(8) from (4.3)

into (4.2) allows us to restate the mass action laws as

follows: There are constants Cki (1 ! k s K, 1 g i ! Ik )

such that if e is any reaction vector, and if N is any

equilibrium composition, then

K k
(4.4) x x aki (Cki + log nki(N)) = 0

k=l i=l

This form of the mass action law, which is quite equiv-

alent to the standard forms, is more convenient for our

purpose.

Another form is often quite useful for computational

purposes. Although there is no need for it in the present

paper, it is developed here for the sake of completeness;

the reader may omit the rest of this section without

destroying any continuity with what follows it.

Let us define

(4.5) Yki = Cki + log nki.

Let us think of y as an 1-dimensional vector where
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K
I X Ilk.

k=l

If we do this, then the condition (4.4) states that y is

orthogonal to all vectors 9 which satisfy the stoichio-

metric equations (3.2). If we think of the quantities

S k,i, as forming L vectors SI,.....Is ... ,SL, each having

dimension I, then (3.2) becomes: 9 is orthogonal to each

S. Thus, the mass action law may be restated as follows:

y is orthogonal to every vector which is orthogonal to each

S. But, it follows from elementary linear algebra that

the condition is satisfied if and only if y is representable

in the form

L

(4.6) y= T t, S

or, equivalently,

L
(4.7) Cki + log nki "_ ki ",t

Thus, the satisfaction of the mass action laws is

equivalent to the existence of quantities nI '"*..T7'" "" 'fL

which satisfy (4.7).
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5. THE GIBBS FREE ENERGY FUNCTION

We will have frequent occasion to refer to the free

energy of a system. Since we are dealing with ideal

systems and since pressure and temperature are constant

for each phase, the free energy of a system is a function

F(N) of its composition N. It may be written as

follows -713,14]

K I k

(5.1) F(N) = E x Nki (Cki + log nk.(N))
k=1 i=l

where C ki (a constant) is called the free energy parameter

of Aki.

The least-action principle for the free energy states

that the system is in equilibrium if and only if its free

energy is a minimum, subject to the mass balance con-

straints (2.1) and to the constraint (2.2); that is to

say, a composition vector N represents an equilibrium

state if and only if F(N ) < F(N) holds for all states N

which satisfy the conditions (2.1) and (2.2) and which

are sufficiently close to NO .

Note that the least-action principle, as stated here,

0
requires only that F have a local minimum at N It will,



-20-

however, turn out that every local minimum of F is really

a global minimum, and hence that the underlined phrase

above can be eliminated.
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PART I I

6. NOTATION

Let E be the real line. For any integer J let EJ be

the real Euclidean space of dimension J. For a point

EJ
N E E we will say that N - 0 when all the components of

N are non-negative. We will say that N > 0 when all the

components of N are positive.

Let K be a positive integer representing the number

of phases. Let 1l...,k,..., IK be positive integers, Ik

being the number of species in the kth phase. Let

K
I= Ik

k=l

We will find it convenient to designate the components of

a point Nc E1 by means of a doubly-indexed system of sub-

scripts. Thus:

N = (NI11,...,N II1,....,N k1,...,N klk,...,N K1,...,NKI K)

For each k (1 < k ! K), let Nk denote the I k-dimensional

vector whose components are Nki (1 - i ! Ik) ; thus,



-22-

Nk (Nkl,...,N klk)

Nk then represents the composition of the kth phase. We

can then symbolically write

N = (N1 ,...,Nk,...,NK)

7. QUASI-DEPENDENCE

DEFINITION 7.1. Two points M, N E are quasi-

dependent if for each phase, k, the vectors Mk and Nk

are linearly dependent; that is, if for each k there

exist scalars ak and bk, not both zero, such that

akMk + bkNk = 0. If M and N are quasi-dependent, we

will write M N N.

The following properties of quasi-dependence are

readily apparent from the definition.

THEOREM 7.2 Let M, N, N' e E

A. M-M.

B. If M - N, then N - M.

C. If M and N are quasi-dependent, then any

two linear combinations of M and N are quasi-

dependent.

D. If M - N and M - N', then M -- N - N'.
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We note that "-" is not a transitive relation:

N - M and M - N' do not necessarily entail N - N'--

for example, if M = 0.

I
THEOREM 7.3. Let M, N e E . A necessary and

sufficient condition for M - N is that for every phase

k and all i and j with 1 s i, j s Ik) we have

(7.1) Mki Nkj = Mkj Nki .

Proof. First, to prove sufficiency, assume that

(7.1) holds and let k be any phase. If Mk = 0, then Mk

and Nk are clearly linearly dependent. Otherwise, there

is a j with Mkj j 0. With j regarded as fixed and i as

variable, (7.1) then says

Nkj Mk - Mkj Nk = 0 .

But since Mk. # 0, this shows that Mk and Nk are linearly

dependent.

Second, to prove necessity, let Mk and Nk be linearly

dependent. There are constants ak and bk, not both zero,

with akAk + bkNk = 0. We may assume without loss of

generality that ak j 0. We then have for all i
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bk

ak k

Hence,
bk bk

k N  N =- N N = Mk j N. . Q.E.D.
ki i a k ki kj a k kj ki~ ki

I

DEFINITION 7.4. Let M, N . E1 . We will say

that M is quasi-dependent on N it, for each phase k,
the vector Mk is a scalar multiple of N For any

N c I, let A(N) denote the set of all M . E which

are quasi-dependent on N.

We thus see that:

THEOREM 7.5. A(N) is the set of all points in

E which can be written in the form

(7.2) (lNJ,...,YXkNk,...,XKNK)

where the Xk are scalars. A(N) is a linear subspace

T
of E. The dimension of A(N) is the number of phases

k for which Nk  0. If M, M' P .(N), then M - M'.

Finally, M c (N) if and only if M - N, and Mk = 0

whenever Nk = 0.

Proof. Clear.

The following lemma will be used in a later proof.
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LEMMA 7.6. Let N a 0, M e A(N), M ; 0, and

M # N. Then there exists M' P A(N) such that M' 0

and M' # N, and such that N lies on the interior of

the line segment joining M to W4.

Proof. Let Xl,...,Xk,..., K be the scalars in the

representation (7.2) of M E A(N). Since M # N, not all

the Xk are 1. Hence, the number c = maxkl!.kk is posi-

tive. Define Xk  l-(Xk-)/c, and define ' = Nk for

each k. Then M' c A(N). Now, (Xk-l)/c never exceeds 1,

and is nonzero for at least one k. It follows that M' a 0

and M' # N. Moreover, we have

N =- M +lc M' Q.E.D.
l+c l+c

Note. To understand the relevance of quasi-dependence,

let us consider its meaning as applied to two points, M,

N c E with M > 0 and N > 0. Then, by Theorem 7.5, M is

quasi-dependent on N if and only if M and N are quasi-

dependent. Furthermore, in the notation of Sec. 1, we

have (by Theorem 7.3) that M - N if and only if n(M) = n(N);

that is, M - N if and only if M and N are composition

vectors yielding identical concentrations.
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8. PROPERTIES OF THE FREE ENERGY FUNCTION

The free energy function as given by (5.1) is de-

fined only for those N s E for which N > 0. This is so

because log t is undefined when t s 0. However, the

definition can be extended to all N e E 1 for which N 0.

To do this, first let us repeat the definition (1.1):

DEFINITION 8.1. Let 1 1 k - K and let N e E

Then

I k

k(N) = k Nki
i=1

If we expand (5.1), taking rote of (1.2), and

simplify the result, we arrive at the extended defini-

tion of F(N):

DEFINITION 8.2.

K I k K

k=l i=l k=l

where 0 log 0 is taken to be zero, and where

C.N = Cik Nik

i,k
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This then defines a function F(N) for all N - 0,

because if N 0, then ok(N) . 0, for all k. Also,

since li t log t = 0, we have:tt0 +

THEOREM 8.3. F(N) is defined and continuous for

all N 2 0.

We will wish to consider directional derivatives of F.

Clearly, it does not make sense to speak of the derivative

of F at N in the direction ^, unless N + t is in the

domain of F for all small positive t. This motivates the

following definition:

DEFINITION 8.4. Given ,N : , we will say

that c is admissible at N if N + t =  0 for all suf-

ficiently small, positive, real t.

The following facts about admissibility will be

useful:

LEMMA 8.5. Let @, N e E . A necessary and suf-

ficient condition for 8 to be admissible at N is that

N 2 0 and that -kj 0 whenever Nkj = 0.

Proof. Clear.

LEMMA 8.6. Let e be admissible at N. For each

k (1 k K) let Jk be the set of all j for which

either Nkj 1 0 or 9kj # 0. Let J be the set of all

k, for which either u k(N) j 0 or :k ( r) j 0; then:
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8.6A: Jk is empty for all k for which k V J.

8.6B: Nkj + t 8kj > 0 for all k, j, with j c Jk)

and for all sufficiently small, positive t.

Proof of 8.6A. Let k J. We have, by the definition

of J,

1) ak(N) 0

2) ak( 8 ) = 0.

By Lemma 8.5, N z 0. Hence, using (1):

3) Nk = 0.

Hence, by Lemma 8 9 k z 0; but then, using (2):

4) 9 k = 0.

But (3) and (4) imply that Jk is empty. Q.E.D.

Proof of 8.6B. If N > 0, the result clearly holds.

Otherwise (since N z 0 by Lemma 8.5), Nkj = 0, and by

Lemma 8.5, kj 0; but by che definition of J we see

that Nkj and 9kj cannot both vanish. Hence, 9kj > 0, and

again the result holds.

LEMMA 8.7. Let 9 be admissible at N. 1 et the

sets Jk' and the set J be defined as in Lemma 8.6.

Let Z = N + t9. Then, for all sufficiently small

t > 0, we have:



-29-

8.7A:

F(Z) = C'Z + 5' Z log Zkj - Z ak(Z) log Mk(Z)
kj k

keJ jeJk kEJ

and,

8.7B: F(N + t8) is differentiable with respect to

t; in fact

F(Z) = C-9 + kj log Z k a k(e) log a k(Z)

kcJ jeJk keJ

and,

8.7C:

d zL (Z(k) log
F( kj Ckj + log k(Z)

keJ JeJ k

and,

8.7D: F(N + t&) is twice-differentiable with respect

to t; in fact,

*This formula, for the case K = 1 and N > 0, appeared

in Ref. 6.
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d F(Z) (Z k e k'- Z )22() u ki k idt 2 kzJ k(Z) i k Zki Zkj

Also, we have,

8-.E: If for some k and j we have Nkj = 0, ak(N) > 0,

ande > 0, then lim - F(Z) = - Finally,

8.7F: If for all k and j for which Nkj = 0 and

9k(N) > 0, we have ekj = 0 (i.e., if the hypothesis
of 8.7E is not satisfied), then

1-o+ dt F(Z) CNkli dt kj kj + log
keJ jCJk k +

Nkj>0

+ I ekj ck.+ logUc.
kcJ jEJk

Nkj=O

Proof of 8.7A. This formula follows from Definition

8.2 and tie convention concerning 0 log 0.
Proof of 8.7B. If we differentiate both sides of

8.7A, we obtain
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dF(Z)
dt

C( + (1+ log Zkj) kj - ( + log ak(Z))Yk(-)

kEJ jeJk kcJ

This differs from the right side of 8.7B by

~ kj j k(a).
k J k kEJ

But this is seen to be 0, using Definition 8.1 and the

fact that ekj = 0 when j J k"

Proof of 8.7C. Follows from 8.7B. The right-hand

side is well defined, because of 8.6B.

Proof of 8.7D. If we differentiate both sides of

8.7B we get:

22 2
d2F(Z))

tZ kj 'k(Z)

kPJ J k ke J

But if we expand the inner term of the right-hand

side of 8.7D, we get
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(right-hand side of 8.7D) =

II Z k i kj2 : +i 2

2 k(Z) -kj 2 ki kj Z ki

N 2NkeJ j jj iEJk k

2e MOak(Z) (z '-!Si).- 2a k(e) + CTk(Z)~ Z)

= (right-hand side of (1)). Q.E.D.

Proof of 8.7E and 8.7F. Both of these propositions

follow from 8.7C, as can be seen by separating the sum-

mation of 8.7C into three portions, depending on the

following conditions on k e J and j c Jk:

Portion 1: Nkj > 0.

Portion 2: N kj 0 and ak(N) = 0.

Portion 3: Nkj 0 and a k(N) > 0.

Portion 3 will be vacuous in the case hypothesized

by 8.7F and Portions 1 and 2 converge to the two sums of

8.7F. If Portion 3 is not vacuous, it converges to -.

Q.E.D.
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DEFINITION 8.8. Let ' be admissible at N. De-

fine the directional derivative F,'!(N) to be

d F (N + t 9)t+ def 1im F(N + t 6) - F(N)
dt F( )t=O+ t= t 0  t

in the event that this limit exists, accepting +'

and -- as possible limits.

In order to evaluate F'(N), we will need the follow-

ing consequence of the mean value theorem of elementary

calculus.

LEMMA 8.9. Let t > 0 and let g(t) be a con-
0

tinuous real-valued function in the interval 0 t to.

Suppose that exists in 0 < t < t and that
dt o

a = lim dg(t)

t-O+ dt

exists (accepting +- and -- as values for a); then,

t 0dt, +

exists and is equal to a.
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THEOREM 8.10. Let ;. be admissible at N. Sup-

pose that for some k and j we have Nkj 0, 7k(N) > 0,

and 'kj > 0. Then, F;(N) = -C.

Proof. Lemmas 8.7E and 8.9.

THEOREM 8.11. Let 9 be admissible at N. Sup-

pose that for all k and j for which Nkj =0 but

-k(N) > 0, we have kj = 0. Then

F'(N) = lokj j log ak(N))

k~ >0 +kE:J N kJ>

lo k

+ z kj j + lgok(@)

keJ N kj=0

Proof. Lemmas 8.7F and 8.9.

The reader might ask why we have not dealt directly

with the partial derivatives of F in order to calculate

such quantities as F,'(N), or indeed in order to examine

directly the behavior of F. The answer lies in an in-

spection of the formula of (8.11), which is nonlinear in

a, as long as any of the components of N vanish; that is,

as long as the second summation of Theorem 8.11 is not

vacuous.
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The techniques for studying the extreme points of a

function of several variables through their first-order

partial derivatives depends on the fact that, for suf-

ficiently well behaved functions, the directional deriva-

tive of a function G(N) in the direction -̂  is a linear

function of 8, and hence,

G'(N) GN
i N.

where the summation index ranges over the components of

Many of the complications of this paper arise because

this relation fails for F(N).

LEMMA 8.12. Let = and -- be admissible at N.

Then F'(N) = -F'

Proof. We must have (because of Lemma 8.5) = 0

for all k and j for which Nkj = 0. Hence, the result

follows from Theorem 8.11.

THEOREM 8.13. F is convex on its domain.

Proof. This follows immediately from the fact that

F is continuous (Theorem 8.3), and from Lemma 8.7D, which

guarantees that F is convex in the interior of all line

segments contained in its domain [15.
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LE MMA 8.14. Let 6 - N, let , N e E and let

6 be admissible at N. Then, F(N + t6) is a linear

function of t, for all t (positive, zero, or negative)

for which N + t' 0.

Proof. Let g(t) = F(N + t9). We will first consider

only the t > 0 for which N + tO - 0. By Lemma 8.7D,

Theorem 7.2C, and Theorem 7.3, we have

d2 (t) = 0

dt
2

for t > 0. Hence, g(t) is linear for t > 0. Similarly,

g(t) is linear for t < 0, in the event that -e is also

admissible. That the two linear functions are the same

is due to the fact that they coincide at t = 0 (Theorem

8.3), and to Lemma 8.12, which says that

dt) t=0- dt 1 t=0+ Q.ED.

Conversely:

LENMA 8.15. Let t, t be real numbers different

from zero. Let M, N c E1 . Suppose that M z 0, N 0,

tM + tN k 0 and that F(tM + t-N) = tF(M) + tF(N). Then,

M - N.
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Proof. By Theorem 7.2, and the fact that F(tN) =

tF(N) for all t a 0, N 0, we may assume without loss

of generality--by a change of notation--that t > 0, t > 0,

and t + t = 1. Then we know, by the convexity of F

(Theorem 8.13), that F is linear on the line segment

joining M to N [15.J. The result then follows from Lemma

8.7D and Theorem 7.3.

9. THE MINIMUM SET OF THE FREE ENERGY FUNCTION

The results of Sec. 8 will now enable us to specify

the nature of the set on which F takes its minimum.

The mass balance laws of Sec. 2 have the effect of

confining N to a certain linear manifold in E1 . According-

ly, we shall be interested in the minimum of F on a fixed

linear manifold, H of E , subject to the additional con-

straint that N > 0.

DEFINITION 9.1. Let Q be the set of all N c E1

for which N t 0. Let H be a fixed linear manifold

(the "mass balance" manifold) of E1. Let D be the

minimum set of F on H n Q. That is, let D be the

set of all N e H n Q such that F(N) F(M) for all

Me HfAQ.

Note. We have now introduced all the Loncepts neces-

sary to define a chemical equilibrium problem. We might
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thus define an abstract chemical system to be:

1) An integer, K > 0.

2) Integers I I .k 0.

3) A linear manifold H of El , such that H Q is not

empty, where

Ik "

k

4) A point C s EI

K specifies the number of phases. The Ik specify the

number of species in the various phases. H determines

the mass balance laws. C determines the parameters of

the free energy function (or of the mass action laws).

THEOREM 9.2. If D is nonempty, there is a

point N D such that' D = '(N) - H Q.

We shall obtain Theorem 9.2 as a consequence of

several lemmas.

LEMMA 9.3. D is convex.

Proof. This follows from the fact that F is convex

(Theorem 8.13) and the fact f at the minimum set of a

convex function is ccnvex. Q.P D.

Thecall the definition of '(N) in Definition 7.4.

iSee Ref. 15.
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LEMMA 9.4. F is constant on D.

Proof. This follows from the definition of D. Q.E.D.

LEMMA 9.5. If M M' -- D, then M -M'.

Proof. If M = M', then the result holds because M - M

(Theorem 7.2A). If M J M', then by the convexity of D

(Lemma 9.3), D contains the interval joining M to M'.

Hence, since F is constant on D (Lemma 9.4), F is constant

on the interval, and hence linear on the interval. Under

these circumstances, we must have (Lemma 8.15) M -, M'. Q.E.D.

LEMMA 9.6. Let N f D; then, '(N) - H - Q - D.

Proof. Choose any point M '(N) - H Q and choose

M' P- '(N) ' Q according to Lemma 7.6, so that N is interior

to the line segment L joining M and M'. We have M - M'

(Theorem 7.5); hence, M - M' - M (Theorem 7.2C); hence,

F is linear on L, by Theorem 8.14. But, L c H r. Q, be-

cause M, N : H and M, M' c Q. If F were not constant on

L, then either F(M) - F(N) or F(M') < F(N), contradicting

N r D. Hence, F(M) = F(N), and M c D. Q.E.D.

LEMMA 9.7. If D is nonempty, there is a point,

N D, such that if for any k, Nk = 0, then for all

M ' D we must have Mk = 0.

Proof. For each k (1 k s K), define a point M( k ) as

follows: If M D can be found with Mk # 0, take M(k) = M;
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if not, let M(k) be an arbitrary element of D. Then the

point

NM(k)

has the required properties, by convexity (Lemma 9.3) and

the fact that D c Q by definition of D.

Proof of Theorem 9.2. Let N be the point given by

Lemma 9.7. By Lemma 9.6, A(N) r H n Q c D. Let M E D.

By Lemma 9.5, M - N. By the way in which N was defined,

for no k can Nk be zero unless Mk is also zero. Hence,

by Theorem 7.5, M e : (N). We have proved that D c A(N).

But, by the definition of D, D c H n Q. Hence,

D c A(N) ' H n Q. Thus, D = A(N) n H n Q. Q.E.D.

THEOREM 9.8. Let N e D. Suppose that for some

k and j, we have N = 0, but Nk j 0. Then, for all

M e H ' Q, we must have Mkj = 0.

Proof. Suppose that for some M c H n Q, we have

Mkj > 0. Since N z 0 and Nk j 0, we have ak(N) > 0. Let

9= M - N. Then, N + t@ E H n Q for all real t for which

0 t ; 1. Therefore, F(N + tS) - F(N) for 0 < t s 1.

Furthermore, 9kj = Mkj - Nkj - Mkj > 0. But then by

Theorem 8.10, F(N + t9) is a strictly decreasing function
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of t for all sufficiently small positive t--this con-

tradicting the assumption that N D. Q.E.D.

Note. The import of Theorem 9.8 is roughly that every

species (j) whose presence has been allowed for, must be

present in some positive amount in any equilibrium com-

position, unless the entire phase (k) containing that

species is not present. More precisely, if no amount of

j is present at equilibrium, then either Nkj must be zero

by virtue of the mass balance laws alone, or no amount of

any j' in the same phase as j can be present for that

equilibrium composition.

Of course, nothing in this theorem forbids Nk being

0 for some equilibrium compositions and non-zero for

other equilibrium compositions.

Note. Theorems 9.2 and 9.8 provide a complete de-

scription of the possible equilibrium sets, D. As a

matter of fact, we will prove below (Theorem 11.1) that

any nonempty set D satisfying the conditions of these

theorems is capable of being the equilibrium set for some

cbemical system.

It follows from the fact that F is a convex function,

that D is a convex set. But, Theorem 9.2 asserts much

more than the convexity of D. In fact, Theorem 9.2
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represents D as the intersection of a linear manifold,

('(N) - H), with Q.

THEOREM 9.9. If H n Q is bounded, then D is

nonempty.

Proof. Since H n Q is closed and F is continuous

(Theorem 8.3), F must attain a minimum value on H n Q.

Q.E.D.

Note. There are no results in this paper which deal

with the question of under what conditions D is nonempty

when H n Q is unbounded. Although the question appears

to be interesting mathematically,t it appears to be of

little chemical interest, because in actual applications

H n Q is always bounded. Thus, we would have been con-

tent to assume, from the outset, that H n Q is bounded.

We have not done so, since all of our results (except,

of course, Theorem 9.9) are valid without this assumption,

and, in fact, the proofs would not be simpler were we to

make this assumption.

10. RELATION TO THE MASS ACTION LAWS

We now wish to relate D to the mass action laws.

Recall from Secs. 3 and 4 that the mass balance laws make

For a discussion of this problem for single-phase

systems (that is, for the case K = 1) see [16].
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assertions about certain points I e which satisfy the

stoichiometric conditions. Since the stoichiometric con-

ditions are obtainable from the mass balance laws by

setting the right-hand sides of the mass balance laws

to zero, the set, HO) of solutions to the stoichio-

metric conditions is a linear space; and H, the mass

balance manifold is a translation of H0 . We accordingly

define:

DEFINITION 10.1. H0 is the set of all points

of the form M - N where M c H and N c H. D is the

set of all points N e H, such that N > 0, and such

that for all 9 c HO, we have:

K I k N,

k=1 i=l

Thus, D0 is the set of points satisfying the mass

balance, as well as the mass action laws. We have in-

sisted that N > 0 for N DO, because the mass action

laws as ordinarily stated are only applicable when N > 0.

We now present a theorem which generalizes the mass

action laws. That is, the condition of Theorem 10.2

reduces to the mass action laws when N > 0.
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THEOREM 10.2. (Generalization of mass action

laws.) N e H n Q is an element of D if and only if

F'(N) z 0 for all 9 : H0 for which 9 is admissible
!0

at N, where F;(N) is given by Theorem 8.10 or

Theorem 8.11.

Proof. The theorem follows from the definition of

D and the convexity of F. Note that Theorems 8.10 and

8.11 assure the existence of F'(N) for 8 admissible at N.

THEOREM 10.3. D is the set of all N e D with

N > 0.

Pzoof. Let N e H, N > 0. We need to show that N e D

0 1
if and only if N e . Since N > 0, all e c E are

admissible at N. Since (by Theorem 8.12) F'(N) = -Fe'(N),

Theorem 10.2 says that N c D if and only if F'(N) = 0

for all e e H0 . But, N > 0 means that the hypotheses

of Theorem 8.11 are satisfied and that the second sum

of Theorem 8.11 is zero. Hence,

K kN
F; (N)z - X Xekj (Ckj + log7 () Q.E.D.

k-l j=l

THEOREM 10.4. If D contains at .east one point

with N > 0, then D is the topological closure of D0 .
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Proof. Apparent from Theorem 10.3 and the convexity

cf D. Q.E.D.

11. THE POSSIBLE MINIMUM SETS

Thus far, I, K, and II,.. I have been fixed positive

integers, H has been a fixed linear manifold of E I C

Ihas been a fixed point in E , and hence D has been a

fixed subset of E1. For the purpose of this section and

this section only, we will abandon the convention as to

C. That is, we will allow C to vary and ask what pos3ible

sets D may result. Our answer (Theorem 11.1) is that D

may be any set which is consistent with Theorem 9.2 and

Theorem 9.8.

THEOREM 11.1. Let N be a fixed element of

H n Q. Suppose that N satisfies the condition of

Theorem 9.8; that is, suppose that for any k,j for which

Nkj = 0 and Nk # 0 we must also have Mkj = 0 for all

M c H n Q. Then, it follows that there exists

C £ E1 such that the resulting minimum set, D, is

given by:

D = ..(N) - H : Q
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Proof. Let A be the set of all M - Q such that

Mkj = 0 for all kj for which Nkj 1 0. Let B be the

set of all M c A such that

X Mkj = 1
k,j

Then B is a bounded set. (Note that if N > 0, then B

is empty and hence certainly bounded.)

Define

G(M) = X Mkj log Mkj - X k(M) log ak(M)

k,j k

By Theorem 8.3 (with C = 0), G is defined and continuous

for M e Q.

Since B A 9 Q and B is a bounded closed set, G(M)

is bounded on B. Hence, there exists a p such that

G(M) > p for all M e B.

Let M e A and suppose that M j 0. Let

INI X MkN
k,j

* N *
then IMI > 0. Let M = - then M c B and hence

IMI'
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G(M ) p. A direct calculation shows that for any
1

t > 0, G(Mt) = tG(M). Taking t 1 , this yields

G(M*) - MI G(M). Hence, G(M) = IMI G(M*) > pIM1.

If M = 0, then G(M) = 0. We have thus proved that

G(M) z pIMI for any M ' A and that G(M) = pIMI only when

M = 0.

Let us now define

Nk
Ckj = - log 7k(N) if Nkj > 0,

Ck j = - p if Nkj = 0 .

Let 6 e E be admissible at N and let I c H0 . The

hypotheses of our theorem guarantee that the hypotheses

of Theorem 8.11 are satisfied. Hence, defining M by

letting Mkj = kj if Nkj = 0 and Mkj = 0 if Nkj # 0, and

using the definition of C, we get

F!(N) = - pIMI + G(M) .

Since M A, we have that G(M) PIMI, and hence

F (N) 0. Furthermore, F'(N) - 0 unless M = 0; that is,

unless 'kj = 0 whenever Nkj = 0. This shows that N c D

(by Theorem 10.2).
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Let M' D. Then, N' - N (by Lemma 9.5). Also, we

must have F constant on the line segment joining N and M'.

Hence, FA -(N) = 0. Thus, (M' - N)k j must be zero when-Hece '-N k

ever Nkj 0. This means that must vanish whenever

Nkj vanishes. This fact and the fact that M' - N imply

(Theorem 7.5) that M' -- 7 (N).

Thus, D c A(N). Since D c H Q, we have

D c A(N) n H ' Q. But, since N E D, we must have

(Lemma 9.6) A(N) r H ) Q c- D. Q.E.D.

12. EXAMPLES OF SPECIAL CASES OF INTEREST

In this section we give some applications of our

results to special cases. We give them more for their

illustrative value than for their importance.

THEOREM 12.1. Suppose that N > 0 for all

N e D; then D contains at most one point.

Proof. We have already shown that D is the inter-/ *
section of some linear manifold, D , with Q. If D

contains two distinct points, then D must contain the

line L through these points. But Q contains no complete

line; hence, L will contain both points in Q and points

outside of Q. Therefore, L contains a boundary point

of Q; that is, a point N with N z 0, but not N > 0, a

contradiction. Q.E.D.
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COROLLARY 12.2. Suppose that H is such that

Nk 1 0 for all k and all N c H - Q, and suppose that

H ' Q contains at least one element, M, with M > 0.

Then D contains at most one point, and, furthernre,

if N c D, then N > 0.

Proof. Theorems 12.1 and 9.8.

COROLLARY 12.3. Let K = 1 (that is, assume the

system consists of only one phase). Suppose that H

does not contain the origin (that is, suppose the

right-hand sides of the mass balance equations do

not all vanish). Then, D cannot contain more than one

point.

Proof. By Theorem 9.2, if D is non-empty, it is given

by D = A(N) - H Q. But, according to the definition,

7.4 of '(N), and because K = 1, the set '(N) is the

set of scalar multiples of N. If H were to contain two

distinct elements of the line .'(N), H would have to

contain 1(N) which contains the origin. Q.E.D.

THEOREM 12.4. Let N, N' r D and suppose that

for some k neither Nk = 0 nor N' = 0. Then,

Nk  N'
k(N) sk(N')
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That is, the mole fractions yielded by any tmo points

in D are the same as long as it is possible to define

the mole fraction.

Proof. We have N - N', by Theorem 9.2 (or directly

from Lemr3 9.5). Q.E.D.
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